[ PDB file ] [ PubMed link ]
Fungi make a hydrophobic coating on their spores by assembling an amphipathic surface monolayer made from small proteins termed hydrophobins. In an effort to try to understand the structural basis for the non-covalent assembly process (in which long, thin, amyloid-like structures known as rodlets are formed), Ingrid Macindoe in Margie’s lab determined the structure of a point mutant – F72G of the Neurospora hydrophobin EAS. This mutant takes much longer to form rodlets – although the rodlets that it finally forms closely resemble wildtype ones. Surprisingly the structure of F72G was indistinguishable from the wild-type protein. On the other hand, a small but measureable increase in flexibility was observed for the mutated region, suggesting that this increased dynamics is responsible for the longer lag time in rodlet formation. This work starts to give us an idea of which parts of EAS are important for rodlet formation.