[ PDB file ] [ PubMed link ]
Haloalkane dehalogenases (HLDs) catalyse the hydrolysis of haloalkanes to alcohols, offering a biological solution for toxic haloalkane industrial wastes. Hundreds of putative HLD genes have been identified in bacterial genomes, but relatively few enzymes have been characterised. We identified two novel HLDs in the genome of Mycobacterium rhodesiae strain JS60, an isolate from an organochlorine-contaminated site: DmrA and DmrB. Both recombinant enzymes were active against C2-C6 haloalkanes, with a preference for brominated linear substrates. However, DmrA had higher activity against a wider range of substrates, such as 4-bromobutyronitrile. We determined the crystal structure of selenomethionyl DmrA to 1.7 Å resolution. A spacious active site and alternate conformations of a methionine side-chain in the slot access tunnel may contribute to the broad substrate activity of DmrA. M. rhodesiae JS60 can utilise 1-iodopropane, 1-iodobutane and 1-bromobutane as sole carbon and energy sources, and this ability appears to be conferred predominantly through DmrA, which shows significantly higher levels of upregulation in response to haloalkanes than DmrB.